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Overview: 

The general framework of this study is the comparison and evaluation of the structures and reasoning potentials 
in different medical knowledge representation systems. Two representations of anatomy were selected as a 
case study: the Foundational Model of Anatomy (FMA) and the GALEN Common Reference Model (GALEN), 
both comprehensive enough to support clinical applications. The FMA is modeled in a frame-based structure 
while GALEN is based on description logic. Our approach consisted of aligning concepts across systems based 
on their lexical resemblance and structural similarity of taxonomical and partitive relationships. Moreover, 
complex structural aligning rules were developed for identifying mappings between groups of concepts across 
systems. Additionally, associative relationships between the FMA and GALEN were compared based on the 
concept matches. In order to facilitate the alignment, knowledge implicitly embedded in concept names and 
combinations of hierarchical relationships was investigated in each system in addition to knowledge explicitly 
represented.  
To evaluate our alignment approach, we compared it to a schema matching system developed at Microsoft for 
aligning the FMA and GALEN. Moreover, we applied our approach to aligning two other representations of 
anatomy: the Adult Mouse Anatomical Dictionary (MA) and the anatomy subset of the NCI Thesaurus (NCI). 
The resulting matches were reviewed manually by a domain expert. 
We also studied the alignment of multiple ontologies by comparing pairwise direct alignment with alignment 
through a reference ontology. The FMA was selected as the reference and MA and NCI were aligned to the 
FMA directly by our aligning approach. An indirect alignment between MA and NCI was derived accordingly, 
and was subsequently compared with matches in the direct alignment between the two systems. 
We proposed ontology modeling principles and investigated the degree to which the FMA complied with these 
principles. Furthermore, in order to compare frame-based structures versus description logics in supporting 
large-scale biomedical ontologies, we converted the FMA from its frame-based representation to the description 
logic language OWL DL. An OWL reasoner was used to identify inconsistencies in the FMA by reasoning on the 
necessary and sufficient conditions defined for classes as well as other properties. Additionally, from a different 
perspective we investigated the FMA by converting it into the Region Connection Calculus (RCC model). Using 
the RCC composition table, spatial relationships among concepts were determined or refined, and 
inconsistencies were detected in the partitive and spatial knowledge representation in the FMA. 
 
 

Aligning the FMA and GALEN using lexical and struct ural methods [1,2] 
� Methods of aligning FMA and GALEN 

Aligning FMA and GALEN consists of the following four steps: 1) acquiring terms, 2) identifying anchors 
(i.e., shared concepts) lexically, 3) acquiring semantic relations, and 4) identifying anchors structurally. The 
first two steps constitute the lexical component of our method, and the last two the structural component. 

o Lexical alignment 
Lexical alignment compares the two systems at the term level, by exact match and after normalization. 
This process makes the source and target terms potentially compatible by eliminating such inessential 
differences as inflection, case, hyphen, and word-order variation. Both preferred terms and synonyms, 
when available, are used in the alignment process. Concepts exhibiting similarity at the lexical level 
across systems are called anchors, as they are going to be used as reference concepts in the structural 
alignment. For example, the concepts Fibularis tertius (synonym: Peroneus tertius) in FMA and 
Peroneus Tertius in GALEN were identified as anchor concepts. Moreover, UMLS synonymy was used 
to identify additional anchors. For example, Greater pelvis in FMA and Major pelvis in GALEN, although 
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lexically different, were identified as an anchor because they name the same anatomical concept in 
UMLS. 

o Structural alignment: acquiring inter-concept hierarchical relations 
Inter-concept hierarchical relations explicitly represented in each system were extracted. In addition, 
three techniques were applied for acquiring implicit knowledge: complementing, augmenting and 
inferring. 
• Complementing 

Hierarchical relationships IS-A and PART-OF have inverse relationships, INVERSE-IS-A and HAS-PART.  
Some relations are represented bi-directionally and some are not. For example, <Arm, HAS-PART, 
Humerus> is explicitly represented in FMA but its inverse relation is missing. In order to perform 
simple comparisons of semantic relations across systems, we complemented FMA and GALEN 
with the inverse relations that were not explicitly represented. For example, we generated the 
relation <Humerus, PART-OF, Arm>. 

• Augmenting 
Instead of representing a PART-OF relationship between concepts X and Y, some knowledge 
representation systems reify the PART-OF relationships in a concept named Subdivision of Y and 
assert an IS-A relationship between concepts X and Subdivision of Y. These two representations 
are equivalent for most purposes. However, nearly 98% of such reified PART-OF relationships are 
not explicitly represented in FMA [August 30, 2002 version]. Cardiac chamber IS-A Subdivision of 
heart, but there are no explicit hierarchical relationships between Cardiac chamber and Heart in 
FMA. We made such reified relations explicit. The augmentation was also applied to concepts 
such as Organ component of X in FMA. In order to facilitate aligning, similarly in GALEN, the 
augmentation was applied to concepts named including SubdivisionOfX, ComponentOfX, and 
StructuralComponentOfX. 
Relations are also captured in various other linguistic phenomena such as nominal modification 
and prepositional attachment. The former often represents a hyponymic relation involving the head 
of the noun phrase. For example, a Sweat gland is a kind of Gland. Therefore, a <X Y, IS-A, Y> 
relation can be tentatively extracted from the term X Y. In anatomical terms, prepositional 
attachment using “of” (X of Y) often denotes a partitive relation between X and Y. For example, we 
generated the relation <Upper lobe of lung, PART-OF, Lung> from the term Upper lobe of lung. 

• Inferring 
Inference consists of generating new inter-concept relationships by applying inference rules. 
These inference rules combine IS-A and PART-OF relationships among concepts to generate 
additional PART-OF relations. They represent limited reasoning along the PART-OF hierarchy, 
generating a partitive relation between a specialized part and the whole or between a part and a 
more generic whole. For example, we add the relation <First tarsometatarsal joint, PART-OF, Foot> 
from <First tarsometatarsal joint, IS-A, Joint of foot> and <Joint of foot, PART-OF, Foot>.in FMA. 

o Structural alignment: identifying similar and conflicting hierarchical relations among anchors across 
systems 
With the explicit and implicit relations, structural alignment identifies structural similarity and conflicts 
among anchors. Structural similarity is defined by the presence of common relations among anchors 
across systems. In other words, for a given anchor, the relations to other anchors observed in FMA are 
expected to be present in GALEN (and vice versa). For example, Fibularis tertius in FMA and Peroneus 
Tertius in GALEN share hierarchical relationships to other anchors, including IS-A Muscle of leg, PART-
OF Leg, and HAS-PART Muscle cell. Therefore, the lexical mapping between Fibularis tertius in FMA and 
Peroneus Tertius in GALEN is supported by structural similarity. 
Conflicts are defined by semantic incompatibility between anchors. The first type of semantic 
incompatibility is represented by the presence of opposite relationships (e.g., PART-OF and HAS-PART) 
between two anchors across systems. The second type of semantic incompatibility is based on the 
disjointedness of top-level categories in knowledge representation systems. In practice, if anchor 
concepts have relationships to disjoint top-level categories in FMA and GALEN, they are declared 
semantically distinct and the corresponding anchor is removed. For example, Foot in FMA and feet in 
GALEN match after normalization, resulting in an anchor. However, the two concepts are considered 
semantically incompatible because FMA’s Foot is linked to the top-level concept Anatomical structure, 
while GALEN’s feet is linked to Unit, Anatomical structure and Unit being disjoint top-level categories. 

 



03/31/2005  

� Results of aligning FMA [August 30, 2002 version] and GALEN [v.5] 
2,353 pairs of matching concepts across systems were identified as anchors by lexical comparison. In 
structural comparison without implicit knowledge, 69% of the anchors were supported by positive evidence, 
30% didn’t have any structural evidence and 1% received negative evidence. Taking advantage of implicit 
knowledge increased the number of anchors acquiring positive evidence to 91%, decreased the number of 
anchors receiving no evidence to 7.5%, and also revealed a few more conflicts between anchors.  

 
� Implementation 

We have developed a unifying Java-based interface to access both FMA and GALEN data. The Java API 
provided by Protégé-2000 is used to communicate with FMA. The GALEN server is accessed through a 
COM interface and we use JACOB, a Java-COM bridge, to interact with GALEN in Java. 

 
� Problems detected during the alignment 

Some of the inconsistencies and errors in the two systems or their development tools were detected 
automatically during the alignment. They have been reported to the GALEN and FMA developers, 
respectively. Some of them are listed as follows. 

o Reflexive and circular hierarchical cycles, either by IS-A or PART-OF. For example in FMA, a PART-OF 
cycle was identified in Apex of urinary bladder -PART-OF→ Urinary bladder - PART-OF→ Apex of urinary 
bladder. 

o Combined hierarchical cycles, e.g., X IS-A Y and Y PART-OF X. For example in GALEN, a combined 
cycle was identified in Conduction Fibres -IS-A→ Myocardium -PART-OF→ Sino Atrial Node -PART-OF→ 
Conduction Fibres Of Right Heart Atrium -IS-A→ Conduction Fibres. 

o Implicit errors are detected in the implicit knowledge of the system. For example, Body of nail IS-A 
Subdivision of body of nail in FMA; WristJoing IS-A UlnoCarpalJoint which IS-A ComponentOfWristJoint; 
again in GALEN, and MalePerineum IS-A ComponentOfMalePerineum in GALEN. 

o Invalid semantic relations, i.e., relation <X, relationship, Y> is present in the system but concept Y does 
not exist in the system.  

o The COM of GALEN returns incomplete concept names or definitions when their lengths go beyond 
some limitation, which makes defective the functions of getting the concept by name and getting the 
name of concept. 

 
 

Aligning the FMA and GALEN solely based on structur al similarity [10] 
 
� Structurally aligning concepts of FMA and GALEN that do not share lexical similarity 

Based on the anchors supported by both lexical and structural similarity, techniques for acquiring new 
mappings based solely on structural similarity are being developed. In practice, the unmapped concepts 
(non-anchors) in FMA and GALEN were compared according to their structural connections to the anchors. 
We developed various structural aligning rules and applied them to identify one-to-one match, one-to-group 
match, group-to-group match, and concepts without match in another system. 

o Aligning Rule 1: Some high-level concepts in GALEN represent non-anatomical categories, e.g., 
Process, NonNormalPhenomenon, RiskFactor, Graft, Food, etc. For any concept in GALEN, if is a 
descendant of one of the non-anatomical categories, it is considered as non-anatomical. Such non-
anatomical concepts in GALEN do not likely have any matches in FMA. For example, 
SupernumeraryThumb was labeled non-anatomical from being a descendant of 
NonNormalPhenomenon. 

o Aligning Rule 2: Two concepts across systems are likely to be a match if they reach the same nonempty 
descendant anchor set through INVERSE IS-A, directly or indirectly. For example, Cuneiform in GALEN 
and Cuneiform bone in FMA. 

o Aligning Rule 3: For any anchor (X,Y), if X is a leaf concept in one system while Y is not in another 
system and all of Y’s descendants {Y1, …, Yn} are not anchors, then it is possible that Y1, …, and Yn do 
not have matches in the system of X. For example, the anchor concept Ankle in FMA has two children: 
Left ankle and Right ankle, while Ankle in GALEN is a leaf concept. Left ankle and Right ankle do not 
likely have matches in GALEN. 
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o Aligning Rule 4: For two concepts of an anchor (X,Y), if X and Y reach the same children anchor set 
through direct INVERSE IS-A (possibly empty), and X and Y have the same number of non-anchor 
children, {X1, …, Xn} and {Y1, …, Yn}, respectively, then it is possible that either two groups of concepts 
match as a whole, i.e., {X1, …, Xn} matches {Y1, …, Yn}; or, the two groups of concepts match on a one-
to-one base, i.e., X1 matches Y1, …, Xn matches Yn. 
• Some of them match as a whole group. For example, anchor HeadOfRadius in GALEN has two 

children: DistalHeadOfRadius and ProximalHeadOfRadius, while anchor Head of radius in FMA 
has two children: Head of left radius and Head of right radius. All these children concepts are non-
anchors. Therefore, a group-to-group match was identified between {HeadOfRadius, 
DistalHeadOfRadius, ProximalHeadOfRadius} in GALEN and {Head of radius, Head of left radius, 
Head of right radius} in FMA. This shows the different views the two systems used in classifying 
head of radius. 

• Some of them actually indicate a group of one-to-one matches. For example, AtrialMyocardium in 
GALEN and Myocardium of atrium in FMA composed an anchor. AtrialMyocardium has two 
children: LeftAtrialMyocardium and RightAtrialMyocardium, and Myocardium of atrium has two 
children: Myocardium of left atrium and Myocardium of right atrium. All these children concepts are 
non-anchors. Two one-to-one matches were identified in this case, i.e., LeftAtrialMyocardium 
matches Myocardium of left atrium, and RightAtrialMyocardium matches Myocardium of right 
atrium. 

o Aligning Rule 5: For two concepts of an anchor (X,Y), if X and Y have the same nonempty children 
anchor sets through direct INVERSE IS-A, all of X’s children are anchors, but Y has non-anchor children 
{Y1, …, Yn}, then it is possible that concepts {Y1, …, Yn} do not have any matches in the other system. 
For example, anchor CerebralHemisphere in GALEN has four children: LeftCerebralHemisphere, 
RightCerebralHemisphere, NonDominantHemisphere and DominantHemisphere, the first two being 
anchors. Anchor Cerebral hemisphere in FMA has two children: Left cerebral hemisphere and Right 
cerebral hemisphere, both being anchors matching the two anchor children under CerebralHemisphere 
in GALEN. Therefore, {NonDominantHemisphere, DominantHemisphere} in GALEN may not have any 
matches in FMA. 

o Aligning Rule 6: If concept X is non-anchor in one system, all of X’s children are anchors {X1, …, Xn}, X’s 
closest anchor ancestor is U, in the other system, the corresponding anchor concepts matching U, X1, 
…, Xn are V, Y1, …, Yn, respectively, and V is the closest anchor ancestor Y1, …,and Yn share, then it is 
possible that concept X matches a group of concepts {Y1, …, Yn} in the other system. For example, 
anchor Lobe of thyroid gland in FMA has three children: Right lobe of thyroid gland, Left lobe of thyroid 
gland and Pyramidal lobe of thyroid gland, all being anchors. In GALEN, all these three anchors are 
descendants under anchor LobeOfThyroidGland as well, except that there is an additional intermediate 
concept (Lobe which < isSpecificSolidDivisionOf ThyroidGland >) that is a children of 
LobeOfThyroidGland and father of LeftLobeOfThyroidGland and RightLobeOfThyroidGland. According 
to Aligning Rule 6, (Lobe which < isSpecificSolidDivisionOf ThyroidGland >) in GALEN was matched to 
anchor group {Left lobe of thyroid gland, Right lobe of thyroid gland} in FMA. 

o Aligning Rule 7:  Suppose mdes(X) denotes the set of all anchors in the descendants of concept X. For 

any two concepts X1 and X2 in one system and concept Y in another system, if mdes(X1) 
⊈

 mdes(X2), 

mdes(X2) 
⊈

 mdes(X1), and mdes(X1) ∪  mdes(X2) = mdes(Y), then it is possible that the single concept 
Y matches a group of concepts {X1, X2}. For example, the concept ExtremityLongPart in GALEN has 
four anchors in the descendants: Arm, Forearm, Leg and Thigh. In FMA, Proximal free limb segment 
has two anchors in the descendants: Arm and Thigh, while Middle free limb segment has two anchors 
in the descendants: Forearm and Leg. A one-to-group match is identified between ExtremityLongPart in 
GALEN and {Proximal free limb segment, Middle free limb segment} in FMA. 

o Associative relationships in GALEN were used to validate the identification of FMA concepts without 
matches. While all FMA concepts exhibit laterality (when appropriate) by names, e.g., using words “left” 
and “right” (e.g., Ankle has two children named Left ankle and Right ankle), many GALEN concepts are 
leaves with associative relationships specifying the property of laterality rather than being classified 
further (e.g., Ankle is a leaf with associative relationship “isPairedOrUnpaired” and the value is 
“mirrorImaged”, which is a kind of “leftRightPaired”). Such property of the GALEN concept Ankle 
validates that Left ankle or Right ankle in FMA can not be precisely mapped to any concept in GALEN. 
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o Aligning Rule 8:  If X is identified as having no matches in another system, then concepts named “… of 
X” or “X of …” may not have matches in another system as well. For Left ankle presented earlier, there 
are 28 concepts in FMA named “… of left ankle” including Skin of left ankle, Anterior part of left ankle 
and Deep lymphatic vessel of left ankle. These concepts are unlikely to have any matches in GALEN.  

o There is a large imbalance between FMA and GALEN in number of concepts that are not yet identified 
in alignment (either as matches or having no matches). The number is about 58,000 in FMA and 9,900 
in GALEN. A lexical analysis was conducted to investigate how these concepts differ in names across 
systems. A word index was created from concept names in both systems, and words with large 
differences in frequency of occurrence across systems are being studied. For example, the word 
“proper” occurs in 1,667 FMA concepts but only once in GALEN. These FMA concepts represent parts 
of organs, arteries, bones, etc. (e.g., Ureter proper, Hepatic artery proper, Subdivision of hepatic artery 
proper, Trapezium proper). This may indicate that GALEN does not specify this specific entity in 
anatomy. Thus mappings can not be provided to these concepts in FMA. 

 
� Results of aligning FMA [December 2, 2004] and GALEN [v.6] by lexical and structural methods 

So far, about 39% of FMA concepts and 84% of GALEN concepts were identified in the alignment. The 
alignment is composed of various types of matches, mismatches, and concepts without matches.  

o One-to-one matches where two concepts across systems share lexical similarity as well as positive 
structural evidence (i.e., anchors). 3,097 matches. 

o One-to-one conflicting concepts with negative structural evidence. 26 pairs. 

o One-to-one matches eliminated after manually disambiguating the cases where two concepts in one 
system both match one concept in another system. 175 pairs. 

o One-to-one matches where two concepts across systems share, although no lexical similarity, the same 
set of anchors in the descendants. 139 matches. 

o One-to-group matches where two concepts in one system jointly have the same set of anchors in the 
descendants with one concept in another system. 32 matches. 

o Concepts in GALEN that do not represent anatomical entities. 39,885 concepts. 

o Concepts that do not have matches in another system due to the classification differences of anchor 
concepts in taxonomy. 9,302 concepts in FMA and 444 in GALEN. In 68% of the cases, the results can 
be validated by laterality terms (containing “left”/”right”) in FMA and associative relationships in GALEN. 

o Concepts that do not have matches in another system since lexically they represent parts or kinds of 
concepts without matches. 17,964 concepts in FMA and 62 in GALEN. 

o One-to-group matches reflecting the different granularities the two systems used in classifying the same 
concept. 46 matches. 

o Group-to-group matches either representing a group of one-to-one matches or reflecting the different 
views the two systems used in classifying the same concept. 41 matches. 

 
 
Comparing the associative relationships between the  FMA and GALEN [5] 

 
� Comparing associative relationships 

There are 59 associative relationships in FMA and 562 in GALEN. Under our hypothesis, a correspondence 
between relationships across systems is indicated by the frequent association one relationship between two 
concepts in one system and either another relationship or a combination of relationships between the 
equivalent concepts in the other system. Thus, our method consists of identifying for each associative 
relationship in one system the relationship (or combination thereof) in another.  

o Acquiring associative relations 
Acquiring associative relations consists of extracting the relations explicitly represented and 
complementing the missing inverse relations. For example, the explicit relation <ArteryOfNasalPassage, 
serves, NasalCavity> was extracted and its missing inverse relation <NasalCavity, isServedBy, 
ArteryOfNasalPassage> was complemented in GALEN. 

o Augmenting associative relations 
Knowledge representation systems sometimes reify the associative relation <X, branch_of, Y> in a 
hierarchical relation between X and a concept called Branch of Y, i.e., <X, isa, Branch of Y>. These two 
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relations are semantically equivalent. In order to facilitate comparisons across system, in each system, 
we made explicit the relations implicitly embedded in the concept names (reified). We applied the 
augmentation technique to the reified branch of and tributary of relationships in FMA and isBranchOf in 
GALEN. For example, from the fact that Pharyngeal nerve is a direct descendant of Branch of maxillary 
nerve is FMA, <Pharyngeal nerve, branch of, Maxillary nerve> was augmented in FMA. Since branch of 
(tributary of, isBranchOf) is not transitive, the augmentation is limited to direct descendants of Branch of Y. 

o Identifying relationship patterns 
Relationship patterns represent the correspondence between relationships (or combination thereof) 
across systems. Such patterns are identified by investigating the relationships among anchors in the 
two systems. More precisely, for each associative relationship between two anchors in one system, we 
searched for all shortest paths between the same two anchors in the other system. Both hierarchical 
and associative relationships are allowed in the paths. However, we ignored the paths where an 
associative relationship and its inverse are present because such paths are usually not indicative of an 
associative relation of interest between the two anchors. An associative relationship between two 
anchors in system and a combination of relationships between the same two anchors in the other 
system compose a path pair. Concepts are removed from the paths to create relationship patterns. 
Additionally, these patterns are simplified by representing several successive relationships of the same 
kind by only one relationship. These transformations generate pattern pairs from path pairs. For 
example, from the path pair:  
FMA: Pancreas → arterial supply → Dorsal pancreatic artery 
GALEN: Pancreas → isServedBy → CaudalPancreaticArtery → isBranchOf → InferiorPancreaticArtery → 
isBranchOf → DorsalPancreaticArtery 
the pattern pair {FMA: arterial supply, GALEN: isServedBy - isBranchOf} is obtained. The frequency of each 
pattern pair (i.e., the number of paths pairs this pattern pair comes from) was recorded in order to select 
only the most frequent pairs (as they are also expected to be the most significant ones), thus ignoring 
“accidental” pattern pairs. 
 

� Results of comparing associative relationships 
847 inter-anchor associative relations were identified in FMA and 6,922 in GALEN. About 10% of them were 
generated by augmentation in FMA and nearly 1% in GALEN. 4,070 inter-anchor path pairs between FMA 
and GALEN were obtained. 350 pattern pairs were identified from these path pairs. In 4% of the cases, two 
associative relationships match across systems (e.g., {FMA: nerve supply, GALEN: isServedBy}). In 87% of 
the cases, one associative relationship corresponds to a combination of hierarchical and associative 
relationships in another system (e.g., {FMA: arterial supply, GALEN: isServedBy - isa}. In 9% of the cases, 
pattern pairs consist of one associative relationship in one ontology and a hierarchical relationship in the 
other (e.g., {FMA: bounded by, GALEN: haspart}). Not surprisingly, about 56% of the associative relationships 
in FMA and 84% in GALEN do not appear in the patterns (e.g., isPositionedDistalTo in GALEN and fascicular 
architecture in FMA). The pattern pair with the highest frequency (13% of 4,070 path pairs) is {FMA: partof, 
GALEN: isBranchOf}. The pattern pair with the second highest frequency (8%) is {FMA: branch of, GALEN: 
isBranchOf}.  
 

� Problems revealed while investigating associative relationships 

o The augmentation of associative relationships in FMA identified a cycle between <Common palmar 
digital vein, isa, Tributary of superficial palmar venous arch> (from which the augmented relation is 
<Common palmar digital vein, tributary of, Superficial palmar venous arch>) and <Common palmar 
digital vein, tributary, Superficial palmar venous arch>. 

o Two inverse patterns in one system matching the same pattern in another system may be indicative of 
the differences in the definition of the concepts identified as anchors. Take the two pattern pairs for 
example: {GALEN: isSpaceDefinedBy, FMA: partof} and {GALEN: isSpaceDefinedBy, FMA: haspart}. 
Path pair example for the first pattern is <OrbitalCavity, isSpaceDefinedBy, Orbit> in GALEN and 
<Orbital cavity, partof, Orbit> in FMA. Path pair example for the second pattern is <ConjunctivalSac, 
isSpaceDefinedBy, Conjunctiva> in GALEN and <Conjunctival sac, haspart, Conjunctiva> in FMA. The 
difference came from the fact that in FMA Conjunctival sac was not taken as a cavity while it was in 
GALEN. 
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Investigating the implicit knowledge representation  in the FMA and GALEN [3] 
 
� Investigating the contribution of techniques for acquiring implicit knowledge.  

In the explicit and implicit knowledge for identifying structural evidence for anchors, relations come from 
different sources: explicit, complemented, augmented or inferred. Some relations can only come from one 
source, while others come from multiple sources. We differentiate five such sources, defined as follows. 

o Base semantics (i.e., valid relations either explicit or complemented, with hierarchical cycles and 
duplicates removed), denoted as B. 

o Augmented semantics, denoted as A. 

o Inferred semantics based on the base, denoted as IB. 

o Inferred semantics based on the augmented, denoted as IA. 

o Inferred semantics based on the base or augmented, denoted as IB∪A. 
Every relation is specified by all of its possible sources, i.e., at least one and at most five. Sources specified 
are those contributing to the relation, and sources not specified are those that can not generate the relation. 
For example,  

<Finger, PART-OF, Free upper limb> (B, A, IB∪A) 

means that the relation is in the base semantics, can be augmented, can be generated by IB∪A, and can 
not be generated by IB or IA. By identifying the source of the relations, we investigated the speciality of the 
explicit representation and implicit knowledge generated by various techniques, within and across systems. 

 
� Some results about the contribution of techniques for acquiring implicit knowledge.  

From the perspective of the semantic relations, the source of a relation represents the method (or methods) 
by which this relation can be generated. From the five individual methods we studied (B, A, IB, IA, and IB∪A), 
nineteen sources in FMA and sixteen in GALEN were found to partition the total set of relations into disjoint 
subsets. To each subset corresponds a combination of methods by which the relations in the subset can be 
generated. Four sources contribute the vast majority of relations in both FMA (about 95%) and GALEN 

(nearly 99%). These sources are: (IB∪A 
∩

 IB), (IB∪A), (B), and (B 
∩

 IB∪A 
∩

 IB). The number and percentage of 
relations coming from each source for FMA and GALEN are analyzed. For example, 105,084 relations in 
FMA can be generated by both A (augmentation) and IB∪A (inference based on the base and augmented 
relations), but not by the other three methods. Moreover, we went into the base semantic relations, 
augmented relations and inferred relations in FMA and GALEN to analyze the proportion of relations that 
can be generated from different techniques. For example, the base semantic relations come from all 

sources involving B, including, for example, (B 
∩

 IB∪A). While some of these relations are only present in the 
base (about 54.9% in FMA and 86.5% in GALEN), some of them may also be augmentable (6.7% in FMA 
and 2.7% in GALEN), be inferable (38.8% in FMA and 11% in GALEN), or both (0.5% in FMA and 0.2% in 
GALEN).  

 
 
Evaluating our alignment approach by comparing to s chema matching techniques [4,7] 

 
� Comparing to the schema matching algorithm for aligning FMA and GALEN 

Unrelated to our work, Peter Mork et al., at Microsoft also took up the challenge of aligning FMA and 
GALEN. PM used Microsoft’s generic schema matching algorithm. The methods consist of lexical mapping, 
structural mapping and hierarchical mapping. Each phase generated a separate set of matches with 
similarity scores in (0,1] and improved the similarity scores of some of the matches from the former phases. 
No distinction was made between concepts and relationships. Although both used lexical and structural 
techniques in general, PM’s approach is domain-independent (thus directly applicable to other domains), 
while ours takes advantage of the domain knowledge to maximize the chances of finding the intersection as 
well as conflicts between the two representations. We compared the matches obtained from our approach 
with those from PM’s. 

o Aligning FMA [version July 2, 2002] and GALEN [v.4] 
For the purpose of comparing the two alignments, we applied our methods to the same versions of 
FMA and GALEN PM used.  
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• The first step was to identify anchors (i.e., shared concepts across systems) lexically through exact 
match and after normalization. Both preferred concept names and synonyms were used.  

• The second step was to identify additional anchors through UMLS synonyms. Two concepts 
across systems were considered a match if their names share the same CUI in UMLS under the 
Anatomy semantic group. Again, both preferred concept names and synonyms were used.  

• The third step was to identify anchors structurally. Anchors received no, positive or negative 
structural evidence, respectively, if they share no, some, or conflicting hierarchical connections to 
other anchors. Both IS-A and PART-OF hierarchical relationships were used. Connections can be 
either direct or indirect. 

• The fourth step was to compare the associative relationships across two systems based on the 
anchors supported by positive structural evidence.  

o Comparing our alignment with Peter Mork’s alignment 
Our alignment is composed of pairs of concepts with structural evidence and pairs of associative 
relationships across systems. PM’s alignment is composed of pairs of concepts/relationships with 
similarity scores across systems. PM considered as valid only the matches with similarity scores higher 
than or equal to some specified threshold. We compared these two alignments to get their intersection 
and the matches specific to each alignment. Moreover we analyzed the reasons that caused the shared 
and exclusive matches and suggested some possible improvements for each method. 

 
� Results of aligning FMA [version July 2, 2002] and GALEN [v.4] 

Our lexical alignment identified 2410 concept matches across systems. Through UMLS synonyms, 366 
additional matches were obtained, resulting in totally 2776 matches. By structural alignment, 2536 (91.4%) 
out of 2776 matches received positive evidence, 40 (1.4%) negative evidence and 200 (7.2%) no evidence.  
PM identified 3780 matches. 2583 (68.3%) of them have similarity scores higher than or equal to the 
threshold set as 0.83, and 2539 out of 2583 actually have the similarity score 1.0. There are 126 matches 
related to relationships (PART-OF and associative). 102 of them are one relationship matching one concept, 
which constitute incorrect pairs, and 24 are relationship pairs. 

 
� Results of comparing the two alignments 

o 2448 concept matches are common to the two alignments.  
• 36 of them received negative structural evidence by our approach but all have similarity scores 

higher than or equal to the threshold by PM’s. This is because PM didn’t identify conflicts between 
two systems. 

• 171 received no structural evidence by ours; 168 of them have similarity scores higher than or 
equal to the threshold by PM’s. 

• 2241 received positive structural evidence by ours. 2199 of them have similarity scores higher than 
or equal to the threshold by PM’s, so these are the really shared matches of the two alignments. 
42 of 2241 have similarity scores lower than the threshold, partly because that PM didn’t use 
synonyms of FMA in the lexical mapping. 

o 328 concept matches are specific to our alignment 
• 12 of them are matches from preferred terms. 
• 168 are from synonyms in FMA, which were not used by PM. 
• 148 were matched through UMLS synonyms. PM missed them because of the difference the two 

approaches have in using UMLS synonyms. In our approach, UMLS synonyms were compared 
against the whole concept name while partial matches were allowed by PM’s approach. 

o 1332 matches are specific to PM’s alignment 
• 17 of them are relationship pairs with similarity scores higher than or equal to the threshold. 3 of 17 

are of PART-OF relationships, 7 were also identified by our associative relationship comparison and 
7 not. 

• 72 of them are of anonymous concepts in GALEN. So far our approach hasn’t dealt with 
anonymous concepts yet.  

• 1111 of them are non-anonymous concept pairs with similarity scores lower than the threshold. 
• 132 of them are non-anonymous concept pairs with similarity scores higher than or equal to the 

threshold. Domain knowledge will be required to validate these matches. 
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Evaluating our alignment approach by aligning anoth er two anatomical ontologies of different 
species [9] 

We applied the techniques of identifying anchors lexically and structurally between FMA and GALEN to 
comparing another two representations of anatomy of different species. The first representation is the Adult 
Mouse Anatomical Dictionary (MA) describing the anatomical structure of the adult mouse. The second is the 
anatomy subset of NCI Thesaurus (NCI) for cancer research, describing the naturally occurring human 
biological structures, fluids and substances. Unrelated to our study, a manual alignment between MA and NCI 
was obtained by a domain expert at the Jackson Laboratory. We compared the matches obtained by our fully 
automatic approach and by manual approach. Moreover, we applied our structural alignment techniques to both 
groups of matches. Hierarchical relationships among matches were acquired in each system and compared 
across systems in order to identify positive structural evidence for the mapping. The results were reviewed by 
an expert.  This work is a collaboration with the Jackson Laboratory and NCI.  
Our fully automatic approach identified 715 matches based on lexical similarity, while the manual approach 
identified 781. 639 matches are common to both approaches. The vast majority of the 639 shared matches is 
supported by positive evidence, while only 45 (7%) of them received no evidence. After review by an expert, it 
was determined that all of the 639 shared matches are valid, including the 45 without structural evidence. 
Secondly, 76 matches are specific to our automatic approach, not identified by the manual approach. 80% of 
them are valid according to the expert review. Lastly, 142 matches were only identified by the manual approach, 
and 94% of them were validated. 

 
 

Aligning multiple ontologies [8] 
Mappings among multiple ontologies can be built pairwise. Alternatively, one ontology can be selected as a 
reference and all other ontologies only need to be mapped to this reference.  We investigated the indirect 
alignment of two anatomical ontologies through a reference ontology, and to compare it to direct alignment 
between these two ontologies. The ontologies under investigation are the Adult Mouse Anatomical Dictionary 
(MA) and the anatomy subset of NCI Thesaurus (NCI). The FMA serves as reference ontology. To our 
knowledge, this is the first attempt to derive mappings automatically among anatomical ontologies from the 
alignment of these ontologies to a reference. 
� Methods 

Our study consists of three phases: 1) three direct alignments: MA-NCI, MA-FMA, and NCI-FMA; 2) an 
indirect alignment between MA and NCI through their direct alignments with the FMA; and 3) a comparison 
of the direct alignment MA-NCI to the indirect alignment obtained through the FMA. 

o Direct alignment 
For the three direct alignments, we applied the techniques for identifying anchors lexically and 
structurally developed for aligning FMA and GALEN. In the lexical alignment, both preferred names and 
synonyms in MA, NCI and FMA are used. Additionally, UMLS synonymy was used to identify additional 
matches. In the structural alignment, inference rules were applied to three systems, and specifically in 
FMA we made explicit the reified PART-OF relations. Structural alignment identifies the similar 
hierarchical relationships among lexical matches as well as structural conflicts. For example, the 
concepts Forelimb in MA and Upper extremity (synonym: Forelimb) in NCI were identified as a match 
through synonymy. Moreover, the match is supported by positive structural evidence because they 
exhibit similar relations to other matches in the two systems, including Limb (through IS-A), Arm and 
Hand (through HAS-PART). 

o Indirect alignment 

An indirect mapping was derived automatically between MA and NCI from the two direct alignments 
MA-FMA and NCI-FMA. For example, the direct alignment MA-FMA identified a match {MA: Forelimb, 
FMA: Upper limb (synonym: Forelimb)}, which is supported by positive evidence. The direct alignment 
NCI-FMA identified a match {NCI: Upper extremity, FMA: Upper limb (synonym: Upper extremity)}, also 
supported by positive evidence Therefore, the match {MA: Forelimb, NCI: Upper extremity} is derived 
automatically, through the FMA concept Upper limb, supported by positive structural evidence in both 
direct alignments. 

o Comparison of the direct and indirect alignments 

We compared the matches obtained by direct alignment MA-NCI and by indirect alignment through the 
FMA. The matches were classified into three groups: matches identified by both alignments; matches 



03/31/2005  

specific to the direct alignment MA-NCI; and matches specific to the alignment through the FMA. The 
match {MA: Forelimb, NCI: Upper extremity} belongs to the first group.  

 
� Results 

o The three direct alignments 
The alignment NCI-FMA identified the largest number of matches (2173), MA-NCI the smallest (715), 
and MA-FMA in the middle (1353). A very small number of conflicts was identified in the two direct 
alignments to FMA, while none were identified in the direct MA-NCI alignment. In the three direct 
alignments, a vast majority of the matches (> 90%) was supported by positive structural evidence. No 
evidence (positive or negative) was found for 5-9% of the matches in three direct alignments. 

o Indirect alignment 
703 matches between MA and NCI were automatically derived from the 1353 matches in the direct 
alignment MA-FMA and the 2173 matches in NCI-FMA. 649 of them (92%) received positive structural 
evidence in both direct alignments MA-FMA and NCI-FMA, 8 (1%) received negative evidence in one of 
the two direct alignments, and 46 (7%) received no evidence in at least one of the two direct 
alignments. 

o Comparison of direct and indirect alignments 

We compared the 715 matches obtained in the direct alignment MA-NCI to the 703 matches resulting 
from the indirect alignment through the FMA. 654 matches are common to both alignments, leaving 61 
matches specific to the direct alignment and 49 specific to the indirect alignment through the FMA. 
Among the 654 shared matches, 583 (89%) received positive structural evidence in all three direct 
alignments, e.g., {MA: Forelimb, NCI: Upper extremity}. 65 (10%) of the 654 shared matches received 
no structural evidence in at least one of the three direct alignments. Although linked to other matches in 
MA (e.g., PART-OF Cranium), Chondrocranium has no hierarchical relations to any other matches in NCI 
and FMA. Therefore the matches of Chondrocranium received no evidence in any of the three direct 
alignments. At last, 6 (1%) of the 654 shared matches received negative evidence in one of the three 
direct alignments. For example, while a concept Pericardial cavity is present in the three ontologies, the 
corresponding match received negative evidence in the direct MA-FMA alignment (from in HAS-PART 
relationship to Pericardium in MA while in PART-OF relationship to Pericardium in FMA), no evidence in 
MA-NCI, and positive evidence in NCI-FMA. 

 
 

Enforcing ontology modeling principles [6] 
� Assessing and enforcing compliance with ontological modeling principles in FMA 

We investigated the degree to which FMA complies with ontological principles. This is a case study of 
assessing and enforcing compliance with modeling principles in large-scale biomedical ontologies. Fifteen 
principles were selected for this purpose, covering various aspects of ontology modeling. 

o Principles about hierarchical cycles, e.g., neither IS-A or PART-OF cycles are allowed. 

o Principles about classification, e.g., every non-leaf concept has at least two children; in every group of 
siblings, each concept has specific properties or relations to other concepts; every non-leaf concept is 
classified according to a single criterion. 

o Principles about incompatible relationships, e.g., for every pair of concepts X and Y, X and Y do not 
have both IS-A and PART-OF relationships. 

o Principles about dependence, e.g., concept Subdivision of X does not exist unless concept X exists; 
anatomical concept with name containing “wall” is in PART-OF relationship with some larger concept. 

o Principles about co-dependence of equivalent relations, e.g., the co-dependence between equivalent 
relations <X, IS-A, Subdivision of Y> and <X, PART-OF, Y> must be identified. 

o Principles about implicit relations (i.e., those implicitly embedded in concept names or combinations of 
relations), e.g., the implicit relations are consistent with explicit relations. 

 
� Results of assessing and enforcing compliance with ontological modeling principles in FMA 

FMA is found mostly in compliance with the principles we tested. This is significant considering FMA has 
been developed in frame-based ontology authoring tool Protégé without built-in mechanisms for specifying 
or checking the consistency. The lack of automatic support for enforcing ontological principles in the 
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authoring tool is the main reason why the system fails to completely comply with the principles. Some of the 
results are listed as follows. 

o Hierarchical cycles include: 
• 32 PART-OF cycles (direct or indirect) for 20 concepts.  
• 25 IP cycles (X - IS-A -…- IS-A - PART-OF -…- PART-OF → X) for 15 concepts. 
• 12 PI cycles (X - PART-OF -…- PART-OF - IS-A -…- IS-A → X) for 5 concepts. 

o Out of 23,368 non-leaf concepts, 99% (23,111) have at least two children while 1% (257) have a single 
child. 48% of 23,111 concepts with more than one child have at least two children sharing identical 
relations to other concepts. 16,181 concepts (70% of 23,111) have children whose names exhibit 
laterality by the words “left” and “right”. 95% of 16,181 concepts are classified only by laterality criterion, 
while 5% exhibit multiple classification criteria. 

o Incompatible relationships include: 
• 309 pairs of concepts have both IS-A and PART-OF relationships (direct or indirect).  
• 21 pairs of concepts have both IS-A (direct or indirect) and BRANCH-OF / TRIBUTARY-OF (direct) 

relationships.  
• 430 pairs of concepts have both PART-OF (direct or indirect) and BRANCH-OF/TRIBUTARY-OF (direct) 

relationships.  
• 123353 pairs of concepts have more than one type of PART-OF relationships (direct or indirect). 

o 1,980 terms are in the form of “Subdivision of X” or “Organ component of X”. In 91% cases, X is present 
in the system, while in 9% cases, X is missing. 1,321 terms contain the word “wall” corresponding to 
1,068 concepts. 64% of these concepts are in some PART-OF relation, while 36% do not have any 
explicit PART-OF relationships to other concepts. 

o Among 147,077 direct explicit PART-OF relations (<X, PART-OF, Y>), 4% are equivalent to some IS-A 
relations (e.g., <X, IS-A, Subdivision of Y>), and 30% equivalent to some combinations of relations (e.g., 
<X, PART-OF, Z> and (<Z, IS-A, Y>). 

o 459,704 relations are explicitly represented in the system while 11,779,914 are embedded implicitly in 
concept names and combinations of relations. The implicit relations are generally consistent with 
themselves and with the explicit relations except in only 41 cases where cycles were found.  

 
 

OWL-izing the FMA [11] 
Collaborating with Dr C. Golbreich from the University of Rennes, France, we attempted to convert FMA 
[version 1.1, 2004] from its frame-based representation in Protégé to the description logic language OWL DL. 
The objective of this study is to investigate description logics versus frame-based formalisms in supporting 
large-scale biomedical ontologies.  
 
� Extracting a subset of FMA for conversion 

The first problem met in the conversion is the size of FMA, whose classes, slots, and slot values add to 
nearly 190,000 frames in Protégé. For efficiency reasons, we extracted a subset of FMA for conversion. In 
our previous study, we noticed that a large proportion of the leaf concepts in FMA only bear laterality 
distinctions compared to their parents. For example, Arm has only two children, Left arm and Right arm, 
and they are leaf concepts. The extraction was performed by hiding these laterality leaf concepts (e.g., Left 
arm and Right arm) and the slot values the other concepts have in connection with them. 
 

� Converting FMA from frame-based structure Protégé to description logic language OWL DL 
Protégé is equipped with OWL Plug-in with several automatic OWL conversion functions. However, they 
failed to handle FMA correctly due to its size and complexity. Therefore, we designed conversion rules and 
coded the conversion by ourselves. These conversion rules specify how to define the properties, classes 
and individuals in OWL based on the frame descriptions of FMA in Protégé. 

o Properties in OWL 

Slots in Protégé with the types Integer, Float, String, or Symbol with values of true and false are 
converted to datatype properties in OWL. Slots in Protégé with the type Symbol and allowed parents or 
allowed values are converted to object properties in OWL, and the union of allowed entities becomes 
the range of the property. Slots manually defined as annotation are converted to annotation properties 
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in OWL. Additionally, single slots in Protégé are specified as functional properties in OWL while multi 
slots are not. Moreover, when a slot has inverse slot in Protégé, if the inverse is itself, then it is 
specified as symmetric property in OWL; otherwise it is specified as the inverse property of its inverse 
in OWL. Finally, for every slot, the union of all the classes having the slot in Protégé becomes the 
domain of the corresponding property in OWL. 

o Classes in OWL 

Concepts in Protégé are converted to classes in OWL, and become SubClassOf of their parent classes. 
Every slot value of the class in Protégé is converted to a necessary condition of the class in OWL by 
existential restriction (i.e., someValuesFrom) or hasValue restriction, depending on whether the slot is 
object or datatype property. For necessary and sufficient condition, we manually designated slots. If a 
class has such slot, then all the values of the slot are converted to one necessary and sufficient 
condition for the class in OWL by intersection of someValuesFrom restrictions. Additionally, when a 
class has a slot specified with allowed parents in Protégé, the union of all the allowed entities becomes 
a necessary condition of the class in OWL by universal restriction (i.e., allValuesFrom). 

o Individuals in OWL 

Each one of the allowed values of slots with the type Symbol in Protégé is converted to an individual of 
:Thing in OWL. 

 
� Results of converting FMA to OWL DL 

About 40,000 FMA concepts and their slot values were extracted for conversion, accounting for 57% of 
originally 70,000 FMA concepts. For this extracted subset of FMA, the OWL file generated by the 
conversion contains 117,000 frames, including 40,000 classes and 77,000 conditions (necessary, and 
necessary and sufficient) for these classes. Additionally, there are 155 properties and 85 individuals 
specified in the OWL file. We designated the slot constitutional part for necessary and sufficient condition, 
resulting in 570 classes defined by necessary and sufficient conditions. 
The NCI Thesaurus in OWL is probably the largest file in the Protégé OWL repository so far. It contains 
53,000 frames, including 34,000 classes and 9,000 conditions of these classes. This shows that it is much 
less complex and smaller than the FMA OWL. Moreover, there are no necessary and sufficient conditions, 
nor hasValue, allValuesFrom, or class union specified in the NCI Thesaurus, while all these restrictions 
occur in the FMA OWL. The complexity and size made the FMA OWL a big challenge for description logic 
systems including developing environments (e.g., Protégé OWL Plug-in) and reasoners (e.g., Racer). 

 
� Classifying the FMA OWL by description logic reasoner Racer 

By reasoning in Racer, inconsistencies in the original FMA knowledge representation were identified which 
generally would have been missed in the frame-based system. Meanwhile, problems in our conversion from 
Protégé to OWL were revealed. These differences show the benefits of description logic systems over 
frame-based systems. On the other hand, the current reasoning software has technical limitations and it 
was impossible to reason about the FMA OWL as a whole. Therefore, specifications causing reasoning to 
fail had to be removed, e.g., global axioms (i.e., a class’ necessary conditions other than its necessary and 
sufficient conditions). Additionally, optimization techniques were explored to downsize and simplify the FMA 
OWL file. Moreover, various smaller OWL files were generated for testing properties in groups (e.g., all 
datatype properties) or one by one. Some of the classification results and optimization techniques are 
described in the following sections. 

o Unsatisfiable classes from reasoning on Boolean datatype properties 

Two classes conflict when they have true and false values respectively for the same Boolean datatype 
property. A class becomes unsatisfiable if it is descendant of both such classes. For example, class 
Zone of cell is identified as unsatisfiable by Racer because it is specified as not having mass and 
meanwhile a descendant of class Material physical anatomical entity which has mass. Additionally, 
descendants of unsatisfiable classes become unsatisfiable, and so do those having someValuesFrom 
restriction to unsatisfiable classes. As a result, a total of 116 classes in FMA OWL are identified as 
unsatisfiable by Racer from reasoning on Boolean datatype properties. 

o Equivalent classes from reasoning on necessary and sufficient conditions 

In the original FMA in Protégé, classes are supposed to be distinct from each other. However, some 
classes are considered equivalent by Racer from reasoning on necessary and sufficient conditions on 
property constitutional part. For example, class Wall of biatrial part of heart becomes equivalent with 
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class Wall of biventricular part of heart because they are siblings and they have the same constitutional 
parts, resulting in sharing the same definition in FMA OWL. There are other cases where a class and its 
direct superclass become equivalent when they have the same constitutional parts. All these 
equivalences are semantically incorrect, which revealed the problem of using one uniform property for 
defining necessary and sufficient conditions of classes.  

o Transitivity of properties 

Defining a property as transitive may reveal more problems in class definitions in FMA OWL. For 
example, class Cell is defined as an anatomical structure and has three other classes as constitutional 
parts. When constitutional part is specified as transitive, some descendants of anatomical structure 
acquire the same three classes as constitutional parts through transitivity reasoning, thus becoming 
direct subclasses of Cell, including Prostate, Cardiac atrium and Breast. This semantically incorrect 
classification can be avoided if the definition of Cell is strengthened by adding more relations into its 
necessary and sufficient condition such as cell is bounded by surface of cell.  

o Complementing inverse relations 

When properties are specified as inverse of each other and used in combination with someValuesFrom 
restriction, some optimization mechanism in Racer has to be switched off which may cause the 
reasoning to fail. Therefore, in order to test inverse properties, we removed the inverseOf specification 
in FMA OWL, automatically added the missing inverse relations, and converted them in OWL the same 
way explicit relations were converted. Complemented relations may change the classification in Racer. 
For example, class Set of ureteric branches of testicular arteries is complemented to be arterial supply 
of Ureter. Set of ureteric branches of testicular arteries is specified as direct subclass of Anatomical set 
template but after classification it has changed its superclass to Anatomical structure. This is because 
Set of ureteric branches of testicular arteries is not in the domain of property arterial supply of (which is 
descendant of Anatomical structure) in the original FMA, but is inferred to be so because of 
complementation. This indicates either that the original arterial supply relationship between Ureter and 
Set of ureteric branches of testicular arteries is wrong, or the domain of arterial supply of should be 
made broader. 

o Unsatisfiable classes from reasoning on domain and range of properties 

The domain and range of a property in OWL can be used to infer that the class having the property is 
subclass of the domain and the class as target of the property is subclass of the range. Unsatisfiability 
occurs when the use of a class in the domain or range of property conflicts with the classification of the 
class. For example, class Surface of wrist becomes unsatisfiable when it is specified as having 
someValuesFrom property 2D part to class Anatomic snuff box. The range of 2D part is Non-material 
physical anatomical entity, but Anatomic snuff box is a descendant of Material physical anatomical 
entity. Non-material physical anatomical entity being disjoint with Material physical anatomical entity 
eventually made the class Surface of wrist unsatisfiable. 

o Optimizing the domain of a property 
The domain of a property in FMA OWL is the disjunction of all classes whose specification in Protégé 
contain the introduction of the corresponding property. The number of such classes may be very large. 
For example, the property arterial supply has 4007 classes in its domain, and location 1618. This 
makes reasoning in Racer very inefficient or even impossible. A domain can be optimized if classes 
which are descendants of others are removed. As a result, 40 properties had their domains downsized, 
e.g., arterial supply has only 4 classes left in its domain and location only 2. After the optimization, the 
size of domains of properties did not cause problems in Racer anymore. 
 

 
Analyzing the spatial knowledge representation in th e FMA using Region Connection Calculus 
(RCC model) 

� About RCC model 
RCC model describes the spatial relationships between regions: DC (Dis-Connection), EC (External 
Connection), PO (Partial Overlap), TPP (Tangential Proper Part), TPPi (inverse of TPP), NTPP (Non-
Tangential Proper Part), NTPPi (inverse of NTPP) and EQ (Equality). They are jointly exhaustive and 
pairwise disjoint (JEPD), which means that any two regions stand in exactly one of the right relationships. 
There is a (8 * 8) composition table for the RCC-8 relationships. R3 is the composition of R1 and R2 means 
for any three objects a, b, c, if R1(a,b) and R2(b,c) hold, then R3(a,c) must hold. For example, for any a, b, 
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and c, if TPP(a,b) and DC(b,c), then DC(a,c) holds. In most of the cases the composition results in a 
disjunction of two or more relationships. For example, for any a, b and c, if PO(a,b) and TPP(b,c), then 

(PO(a,c) ⋁  TPP(a,c) ⋁  NTPP(a,c)) holds. In a few cases the composition leads to nothing. For example, for 
any a, b, and c, if DC(a,b) and DC(b,c), then a and c can be in any of the eight RCC relationships, which 
basically tells nothing, because this is already implied in the JEPD feature of RCC model. 

 
� Converting the partitive and associative relations and attributed slot values in the FMA to RCC relationships 

o Converting rules 
The FMA is not built based on the RCC model. Instead, spatial connections among anatomical entities 
must be derived from partitive and associative relationships, e.g., constitutional part of, contained in, 
surrounded by, branch of, muscle origin, and adjacent to. Moreover, some attributed slots in the FMA 
also represent spatial anatomical knowledge. Here is an example of attributed slot location: 

Heart|location|laterality(Right)|coordinate(Lateral)|adjacent(true)|related object(Right lung)| 
It represents the spatial connections between Heart and Right lung: they are adjacent. A manual 
analysis was performed by a domain expert, and resulting in more than 50 conversion rules. Some of 
these rules are shown in the following: 

constitutional part of->TPP ⋁  NTPP 

constitutional part->TPPi ⋁  NTPPi 
continuous with->EC 
branch of->EC 
adjacent to->EC 
muscle origin->EC 

contained in->PO ⋁  TPP ⋁  NTPP ⋁  EQ 

surrounded by->EC ⋁  EQ 

attributed regional part->TPPi ⋁  NTPPi 
location + adjacent(true)->EC 
location + adjacent(false)->DC 

o Methods of converting 
Conversion rules were applied to partitive and associative relations and attributed slot values. For any 
two concepts X and Y, if they don’t have any relation that can be converted into RCC relationships, then 

RCCcnvt(X,Y) = ALLRCCS =DC ⋁ EC ⋁ PO ⋁ TPP ⋁ TPPi ⋁ NTPP ⋁ NTPPi ⋁ EQ. If X and Y has only 

one relation <X, R, Y> that can be converted, and slot R has conversion rule R->rci 
⋁  … rcn, then we 

have RCCcnvt(X,Y) = rci 
⋁  … rcn. If X and Y stand in another relationship R’, and R’->rcj 

⋁  … rcm, then 

RCCcnvt(X,Y) = (rci 
⋁  … rcn) ⋀ (rcj 

⋁  … rcm). Then we check if RCCcnvt(X,Y) = ⊥ , which indicates 
some inconsistency in the direct FMA spatial knowledge representation between X and Y, or inaccuracy 
in the conversion rules of slots involved. 

o Results of converting 
From conversion, 84284 pairs of concepts have obtained RCC relationships (excluding ALLRCCS), of 

which 18112 have only one RCC relationship. 1818 pairs of concepts are in ⊥ , and the causes for 
inconsistency need to be further investigated. 

 
� Applying the RCC composition table to infer additional RCC relationships among concepts in the FMA 

o Methods of applying RCC composition table 
For any two concepts X and Z, if there does not exist a concept Y such that  neither RCCcnvt(X,Y) nor 

RCCcnvt(Y,Z) is ALLRCCS or ⊥ , then RCCcnvt(X,Z) = ALLRCCS. If there exists such a concept Y, 
then according to the RCC composition table, we get RCCcomp(X,Z) = CT(RCCcnvt(X,Y), 
RCCcnvt(Y,Z)). If there exists another such class Y’, then RCCcomp(X,Z) = CT(RCCcnvt(X,Y), 

RCCcnvt(Y,Z)) ⋀  CT(RCCcnvt(X,Y’), RCCcnvt(Y’,Z)). We check if RCCcomp(X,Z) = ⊥ , which indicates 
some inconsistency in the FMA spatial knowledge representation between X and Z indirectly through 
other classes, or inaccuracy in the conversion rules of slots involved. 
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Note: CT((rck 
⋁

 … rcs), (rct 
⋁

 … rcl)) = ⋁ ct(rci, rcj), where rci loops from rck  to rcs and rcj loops from rct  
to rcl,, and ct(rci, rcj) represents the composition result of two RCC relationships rci and rcj. 

Finally, for any two concepts X and Y, their final RCC relationships are RCC(X,Y) = RCCcnvt(X,Y) ⋀  

RCCcomp(X,Y). We check if RCC(X,Y) = ⊥ . If so, and RCCcnvt(X,Y) ≠⊥  and RCCcomp(X,Y) ≠⊥ , then 
this indicates an inconsistency between direct spatial knowledge of X and Y and their inferred spatial 
knowledge through other concepts, or inaccuracy in the conversion rules of slots involved. 

o Results of applying RCC composition table 
From composition, 707284 pairs of concepts have obtained RCC relationships (excluding ALLRCCS). 
280822 pairs of concepts have obtained ALLRCCS and they were ignored. 698588 pairs out of 707284 
acquired RCC relationships specifically from conversion, while 8696 pairs also acquired RCC 
relationships from conversion.  
For 698588 pairs obtaining RCC relationships only from composition, 28042 have only one RCC 

relationship. 1520 pairs are in ⊥ , and the causes for inconsistency need to be further investigated. 
For 8696 pairs obtaining RCC relationships both from conversion and composition, 1126 of them have 

only one RCC relationship in the final RCC. 2194 pairs are in ⊥  finally and the causes for inconsistency 
need to be further investigated. 

 
� Analysis of positive results 

Concept pairs with only one RCC relationship reveal definite spatial relationships between the two 
concepts. When two concepts do not have any direct slots that can be converted into RCC, if there exists a 
third concept that has RCC relationships with these two concepts respectively, then by composition we can 
infer the RCC relationships between these two concepts. This demonstrates the power of spatial reasoning 
by using RCC model. For example, Esophagogastric junction and T10 part of heart do not have any slots 
can be converted. However, Esophagogastric junction stands in regional part of relation to Abdominal part 
of esophagus, which is converted into proper parts in RCC. On the other hand, T10 part of heart has 
attributed slot location to Abdominal part of esophagus with “adjacent(false)”, thus it was inferred that the 
two concepts are disconnected in RCC. The reasoning is shown as follows. ∵ RCCcnvt(Esophagogastric junction, Abdominal part of esophagus) = TPP ⋁ NTPP 

   RCCcnvt(Abdominal part of esophagus, T10 part of heart) = DC ∴ RCC(Esophagogastric junction, T10 part of heart) = CT(RCCcnvt(Esophagogastric junction,  
Abdominal part of esophagus), RCCcnvt(Abdominal part of esophagus, T10 part of heart))  

= CT((TPP ⋁ NTPP), DC) = DC 
 

� Analysis of negative results 

Concept pairs with ⊥  in their RCC relationship indicate either inconsistencies in the FMA spatial knowledge 
representation or inaccuracies in our conversion rules. For example, we found many cases where two 
concepts are continuous with each other and, simultaneously, have a common third concept as part. For 
example: 

RCCcvnt(Wall of right side of heart, Fibroelastic connective tissue of endocardium) = TPPi 
⋁

 NTPPi, 
from relationship constitutional part 

RCCcvnt(Wall of left side of heart, Fibroelastic connective tissue of endocardium) = TPPi 
⋁

 NTPPi, 
from relationship constitutional part 
RCCcnvt(Wall of right side of heart, Wall of left side of heart) = EC, from relationship continuous with 

Therefore, through concept Wall of left side of heart, one conjunct in RCCcomp(Wall of right side of heart, 
Fibroelastic connective tissue of endocardium) is CT(RCCcnvt(Wall of right side of heart, Wall of left side of 
heart), RCCcvnt(Wall of left side of heart, Fibroelastic connective tissue of endocardium)) = CT(EC, (TPPi ⋁  NTPPi)) = DC ⋁  EC. Since (DC ⋁  EC) ⋀ RCCcvnt(Wall of right side of heart, Fibroelastic connective 

tissue of endocardium) = ⊥ , the final RCC(Wall of right side of heart, Fibroelastic connective tissue of 

endocardium) = ⊥ . 
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